Versatile Python Interface for Real-space Density Functional Theory Calculations (2024)

ilesRGB.icc

Tian Tian \orcidlink0000-0003-0634-0455Lucas R Timmerman \orcidlink0000-0001-5664-5762Shashikant Kumar \orcidlink0009-0001-5134-1580Ben Comer \orcidlink0000-0002-7528-0049Andrew J Medford \orcidlink0000-0001-8311-9581Phanish Suryanarayana \orcidlink0000-0001-5172-0049

margin: DOI: 10.xxxxxx/draftSoftwareReview Repository Archive Editor: OpenJournals
Reviewers:
@openjournalsSubmitted: 01 January 1970
Published: unpublished
License
Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

Density Functional Theory (DFT) is the de facto workhorse forlarge-scale electronic structure calculations in chemistry and materialsscience. While plane-wave DFT implementations remain the most widelyused, real-space DFT provides advantages in handling complex boundaryconditions and scaling to very large systems by allowing for theefficient use of large-scale supercomputers and linear-scaling methodsthat circumvent the cubic scaling bottleneck. The SPARC-X project(https://github.com/SPARC-X) provides highly efficient andportable real-space DFT codes for a wide range of first principleapplications, available in both Matlab (M-SPARC([];[])) and C/C++(SPARC ([];[])). The rapidgrowth of SPARC’s feature set has created the need for a fullyfunctional interface to drive SPARC in high-throughput calculations.Here we introduce SPARC-X-API, a Python package designed to bridge theSPARC-X project with broader computational frameworks. Built on theatomic simulation environment (ASE([])) standard,the SPARC-X-API allows users to handle SPARC file formats and run SPARCcalculations through the same interface as with other ASE-compatible DFTpackages. Beyond standard ASE capabilities, SPARC-X-API providesadditional features including 1) support of SPARC-specific setups,including complex boundary conditions and unit conversion, 2) a JSONschema parsed from SPARC’s documentation for parameter validation andcompatibility checks, and 3) a comprehensive socket communication layerderived from the i-PI protol([];[]) facilitatingmessage passing between low-level C code and the Python interface. Thegoal of the SPARC-X-API is to provide a easy-to-use interface for userswith diverse needs and levels of expertise, allowing for minimal effortin adapting SPARC to existing computational workflows, while alsosupporting developers of advanced real-space methods.

Statement of Need

DFT has unargubaly become one of the cornerstones of electronicstructure simulations in chemical and materials sciences due to itssimplicity and wide range of applicability. Among the various numericalimplementations of DFT, the plane-wave pseudopotential method has gainedsignificant popularity, owing to both its robustness and the maturity ofassociated software packages. However, despite their widespread use,plane-wave methods are not without limitations. One long-standingchallenge in DFT is to develop methods that overcomes the hugecomputational cost for solving the Kohn-Sham equation, which scalescubically with respect to the system size. This becomes especiallyproblematic in massively parallel computing environments, where theextensive global communication required during Fourier transformationslimits the scalability, making it challenging to efficiently simulatevery large systems in plane-wave DFT. In plane-wave methods, the globalnature of the Fourier basis used limits the ability to achieve linearscaling ([]). Moreover, the periodic nature of the Fourier basis enforces theuse of periodic boundary conditions, making the simulation setup ofisolated and semi-finite systems non-straightforward. A compellingalternative to overcome these limitations is to solve the Kohn-Shamequations using a finite-difference (FD) approach on real-space grids.The locality of the FD method makes real-space DFT methods inherentlyscalable, and paves the way for the development of linearly-scalingsolutions to the Kohn-Sham equations. Real-space DFT also naturallysupports both periodic and Dirichlet boundary conditions, andcombinations thereof, allowing for the flexible treatment of systems inany dimensionality.

In the past few years, the SPARC-X project(https://github.com/SPARC-X) has led efforts to develop anopen-source, real-space DFT code that is both user-friendly andcompetitive with state-of-the-art plane-wave codes. The philosophy ofthe SPARC-X project is to provide codes that are highly efficient andportable (i.e., straightforward to install and use across variouscomputational environments). The codes also seek to be user-friendly anddeveloper-friendly to facilitate the implementation of new algorithms.In line with this, SPARC-X offers real-space DFT algorithms through twoimplementations: 1) Matlab-based M-SPARC([];[]) for algorithmprototyping and small-system simulations, with no external dependenciesother than Matlab itself, and 2) C/C++ based SPARC([];[]) for large-scaleproduction calculations that can accommodate a wide range of systemsizes and requires only MPI and MKL/BLAS for compilation. New featuresof SPARC include spin-orbit coupling, dispersion interactions, andadvanced exchange-correlation (xc) functionals([]),linear-scaling Spectral Quadrature (SQ) method([]), cyclic/helical symmetry([]), real-space density functional perturbation theory (DFPT)([]),orbital-free DFT (ODFT) ([]), on-the-fly machine-learning force fields(OTF-MLFF) ([], [];[]). Therapid development of SPARC has led to the need for a fully functionaland user-friendly interface that facilitates the use of SPARC withhigh-throughput workflows. To address this, we introduce theSPARC-X-API, a Python interface designed to bridge the SPARC code with awide range of scientific workflows. The SPARC-X-API builds upon thePython wrapper originally shipped with SPARC version 1.0([]), offering an APIcompatible with the widely-used ASE (ASE([])) standardand updated with the latest versions of SPARC. With ASE’s support forvarious popular DFT methods, including both plane-wave (e.g.VASP([]), QuantumESPRESSO ([]), andAbinit ([])), andreal-space (e.g.GPAW ([]; []) and Octopus([])) implementations, SPARC-X-API enables seamless integration ofSPARC into existing workflows, allowing users to incorporate real-spaceDFT calculations with minimal adjustments. The modular design ofSPARC-X-API makes it straightforward to be plugged into complexcomputational workflows, for example high-throughput dynamicssimulations by i-PI ([]) and PLUMED ([]), as well as active machine learning frameworks including FineTuna([]),powered by state-of-art neural network interatomic potentials such asFAIR-Chem(https://github.com/FAIR-Chem/fairchem)[https://github.com/FAIR-Chem/fairchem]and MACE-MP ([]) modelseries. A summary of the role SPARC-X-API in the SPARC-X project isshown in Figure1. In addition to the capabilitiesinherited from ASE, SPARC-X-API seeks to enhance the user experience ina few key aspects, including 1) supporting SPARC-specific features in anASE-comatible API, 2) a parameter validation mechanism based on SPARC’sLaTeX documentation, and 3) a versatile socket communicationlayer for efficient high-throughput calculations. Details will bediscussed next.

Versatile Python Interface for Real-space Density Functional Theory Calculations (1)

Features andFunctionalities

The SPARC-X-API is structured as a Python package, sparc. Asummary of its key functionalities is provided below; for currentdetailed documentation, please refer to theofficial documentation.

sparc.io: File I/OManupulation

In SPARC and M-SPARC calculations, input information is provided by twofiles: a .inpt (cell dimensions, boundary conditions,calculation flags), and a .ion file (atomic configurations andlocations to pseudopotential). Depending on the type of calculation,various output files may be written, such as.static,.geopt or .aimd. The separation of information acrossmultiple files means converting ASE Atoms objects to SPARCinput files or retrieving energy and forces information from SPARCcalculations requires handling more than just a single file, as iscommon in most ASE I/O formats. To manage this, the SPARC-X-API operateson the directory level, treating each calculation directory as a “SPARCbundle”. The sparc.io.SparcBundle class facilitates readingfrom and writing to this bundle, ensuring that all necessary input andoutput files are properly handled. By default, the SPARC-X-API alsocopies relevant pseudopotential files into the calculation directory,making the SPARC bundle portable across different machines. From version2.0 onwards, the SPARC-X-API leverages the new features introduced inASE version 3.23 to register as an external I/O format, allowing readingand writing SPARC files directly using ase.io submodule:

fromase.ioimportread,write#1.ReadaSPARCbundlebyspecifyingthe`sparc`formatatoms=read("sparc_output_dir",format="sparc")#2.WritetoaSPARCbundlefromabothobjectwrite("sparc_input_dir",atoms,format="sparc")

The SPARC-X-API also supports parsing complex boundary conditions fromthe .inpt file. The periodic (P) and Dirichlet (D) boundaryconditions are translated into True and False values,respectively, in the corresponding pbc direction of anAtoms object. Standard ASE objects do not natively supportcyclic (C) or helical (H) boundary conditions that are available inSPARC, so the SPARC-X-API treats them similarly to Dirichlet boundariesand stores the original boundary condition information in theinfo attribute of the atomic object. This ensures that thecorrect boundary combinations are preserved when re-writing to SPARCinput files.

sparc.api: ParameterValidation

In the ASE ecosystem, default calculator interfaces such asFileIOCalculator do not implement parameter validation, whichcan lead to issues such as incorrect parameter settings orincompatibility when running calculations through ASE. To address this,the SPARC-X-API introduces a robust parameter validation system using aJSON schema generated from SPARC’sLaTeXdocumentation. A JSON schema contains the version of the SPARCsoftware, a list of input parameters used in .inpt and.ion files, as well as supported data types and parametercategories. Validation is handled via the sparc.api.SparcAPIclass, and includes:

  • Verify that the schema is compatible with the version of SPARC binary.

  • Convert .inpt fields into Python data types.

  • Validate input parameters in both string and numerical formats.

  • Output help information about specific parameter(s).

Each release of the SPARC-X-API contains a copy of a JSON schema linkedwith the latest SPARC release as the default validator, although theuser is can select different combination of SPARC versions and schemasdepending on the version they are using. The separation between theSPARC-X-API and the core SPARC code not only prevents the need forhard-coding parameter lists into the API, but also facilitates easiermaintenance: the “central truth” of parameters remains in the SPARCdocumentation, maintained by the SPARC core developers, while theSPARC-X-API focuses on providing a user-friendly interface without beingtied to constant updates. This approach maximizes flexibility and avoidsversion conflicts between the API and the underlying code.

sparc.calculator:Socket-Communication CalculatorInterface

The submodule sparc.calculator provides a class SPARCas the main entry point for driving SPARC calculations. This classprovides two modes of operation: 1) a file I/O-based calculatorextending the ase.calculators.FileIOCalculator class, and 2) acomprehensive socket communication layer that allows directcommunication between the Python API and low-level C/C++ code.

In file I/O mode, the SPARC calculator object utilizes thesparc.io.SparcBundle for generating input files andsparc.api.SparcAPI for parameter validation, while the mode ofcalculation (single-point, relaxation or molecular dynamics) iscontrolled by the input flags. For users transitioning from other DFTpackages and their ASE calculators, the SPARC-X-API is designed tominimize adaptation effort, but the API is designed to also enableadvanced inputs from expert users. The SPARC calculator classachieves this by supporting two sets of input parameters: 1) lower-casespecial parameters that follow conventions from other ASE DFTcalculators (e.g.real-space grid spacing h from GPAW, andexchange-correlation keyword xc from VASP) that use the ASEdefault Angstrom-eV system, and 2) case-insensitive raw SPARC inputparameters in Bohr-Hartree units for fine-grained control. This dualapproach is designed so that users familiar with other DFT codes canadopt SPARC with minimal changes to their existing workflows, whileexpert users can exert full control. Basic DFT calculations can becovered by using standard ASE parameter sets in the SPARC-X-API, asshown by the side-by-side constructor with VASP and GPAW, using the sameexchange-correlation functional and compatible convergence settings:

#1.UsingVASPfromase.calculators.vaspimportVaspcalc=Vasp(xc="pbe",kpts=(9,9,9),ecut=450,ediff=1.e-4)#2.UsingGPAWfromgpawimportGPAWcalc=GPAW(xc="pbe",kpts=(9,9,9),h=0.25,convergence={"energy":1.e-4})#3.UsingSPARCfromsparc.calculatorimportSPARCcalc=SPARC(xc="pbe",kpts=(9,9,9),h=0.25,convergence={"energy":1.e-4})

In high-throughput frameworks requiring thousands of single-point DFTevaluations, relying on file I/O mode can be inefficient, ascalculations are restarted at each DFT call and the total number offiles may exceed SPARC’s default file count limit. The socket layer inthe SPARC-X-API avoids these limitations by directly communicating witha long-running SPARC process for updating atomic positions, whilekeeping density and orbitals in memory and reducing self-consistentfield (SCF) cycles. While alternative communication methods exist, suchas C-binding approaches seen in GPAW([]) and Psi4([]), these typicallyinvolve complex compilation and integration steps when installing thePython package. We chose a socket-based communication layer for itssimplicity, which allows for a clear separation between the Python andSPARC codebases, minimal modifications to the existing C/C++ code, andease of installation without requiring recompilation.

The communication protocol used in the SPARC-X-API socket, referred toas the SPARC protocol, is based on the i-PI protocol([];[]), which is alsoadapted by a wide range of ASE calculators. The SPARC protocolintroduces additional header types and supporting binary data transfersvia Python’s pickle format. While SPARC’s C/C++ code maintainscompatibility with the original i-PI standard, the SPARC-X-API leveragesthe extended protocol with pickle decoding. The two-tier design offersflexibility for socket calculations. At its core, the SPARC binary cancommunicate directly with any i-PI-compatible server, such asase.calculators.socketio.SocketIOCalculator in ASE, using thebasic protocol, though this requires careful setup by the user. However,the SPARC-X-API leverages the SPARC protocol, which allows the API tointernally relay more advanced data types to the SPARC binary, handlingobject decoding and socket resets automatically. When running socketcalculations on a single machine, users can activate socket mode bysimply adding use_socket=True to the SPARC calculatorconstructor, enabling UNIX socket communication without additionalsetup. More importantly, the design of the SPARC protocol allows easyand seamless integration in distributed computational systems, offeringthe following features: 1) flexible client initialization / restart 2)efficient data transfer 3) heterogeneous computational setup. The designof the SPARC protocol allows insertion of bidirectional additionalroutines between two DFT calls, allowing further control over thelow-level C/C++ code. Figure Figure2 summarizes theserver-client setup across hybrid computing platforms.

Versatile Python Interface for Real-space Density Functional Theory Calculations (2)

Miscellaneous HelperFunctionalities

The SPARC-X-API also provides several helper functions to facilitateuser installation and testing, including:

  • sparc.quicktest: a utility to verify the installation andenvironment setups for SPARC-X-API and SPARC.

  • sparc.docparser: a submodule to convert existingLaTeX documentation included in SPARC source code into JSONschema.

  • sparc.download_data: a tool to download the latest ONCVpseudopotentials released by SPARC.

  • sparc-ase: an extension to the commandline ase tool,adding compatibility with SPARC file formats.

Code Release andMaintenance

The SPARC-X-API is released as source code in github repositoryhttps://github.com/SPARC-X/SPARC-X-API, and as aconda-forge packagesparc-x-api.When installed using conda-forge, the package is bundled withthe optimized SPMS pseudopotentials([]), andcompatible with thesparc packagethat contains the compiled SPARC binary.

It also integrates continuous integration (CI) workflows for:

  • Unit testing and code coverage

  • Fetching the latest SPARC documentation for updating the JSON schema

  • Validating all test examples from the SPARC repository

These workflows ensure that SPARC-X-API remains up-to-date with ongoingSPARC developments while separating parameter updates from the mainSPARC maintainers’ efforts.

Acknowledgements

The authors gratefully acknowledge the support of the U.S. Department ofEnergy, Office of Science, under Grant No.DE-SC0019410 andDE-SC0023445.

References

    References

    • Batatia, I., Benner, P., Chiang, Y., Elena, A. M., Kovács, D. P.,Riebesell, J., Advincula, X. R., Asta, M., Avaylon, M., Baldwin, W. J.,Berger, F., Bernstein, N., Bhowmik, A., Blau, S. M., Cărare, V., Darby,J. P., De, S., Della Pia, F., Deringer, V. L., … Csányi, G. (2024).A foundation model for atomistic materials chemistry. arXiv.https://doi.org/10.48550/ARXIV.2401.00096
    • Bonomi, M., Bussi, G., Camilloni, C., Tribello, G. A., Banáš, P.,Barducci, A., Bernetti, M., Bolhuis, P. G., Bottaro, S., Branduardi, D.,Capelli, R., Carloni, P., Ceriotti, M., Cesari, A., Chen, H., Chen, W.,Colizzi, F., De, S., De La Pierre, M., … The PLUMED consortium. (2019).Promoting transparency and reproducibility in enhanced molecularsimulations. Nat Methods, 16(8), 670–673.https://doi.org/10.1038/s41592-019-0506-8
    • Bowler, D. R., & Miyazaki, T. (2012). O(n) methods in electronicstructure calculations. Reports on Progress in Physics,75(3), 036503.https://doi.org/10.1088/0034-4885/75/3/036503
    • Ceriotti, M., More, J., & Manolopoulos, D. E. (2014). I-PI: A pythoninterface for ab initio path integral molecular dynamics simulations.Computer Physics Communications, 185(3), 1019–1026.https://doi.org/10.1016/j.cpc.2013.10.027
    • Enkovaara, J., Romero, N. A., Shende, S., & Mortensen, J. J. (2011).GPAW - massively parallel electronic structure calculations withpython-based software. Procedia Computer Science, 4,17–25. https://doi.org/10.1016/j.procs.2011.04.003
    • Ghosh, S., & Suryanarayana, P. (2016). Higher-order finite-differenceformulation of periodic orbital-free density functional theory.Journal of Computational Physics, 307, 634–652.https://doi.org/10.1016/j.jcp.2015.12.027
    • Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., BuongiornoNardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D.,Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., Gironcoli, S.de, Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G.,… Baroni, S. (2017). Advanced capabilities for materials modelling withquantum ESPRESSO. Journal of Physics: Condensed Matter,29(46), 465901. https://doi.org/10.1088/1361-648x/aa8f79
    • Gonze, X., Amadon, B., Antonius, G., Arnardi, F., Baguet, L., Beuken,J.-M., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., Brouwer, N.,Bruneval, F., Brunin, G., Cavignac, T., Charraud, J.-B., Chen, W., Côté,M., Cottenier, S., Denier, J., … Zwanziger, J. W. (2020). The abinitproject: Impact, environment and recent developments. ComputerPhysics Communications, 248, 107042.https://doi.org/10.1016/j.cpc.2019.107042
    • Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E.,Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B.,Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P., Kermode,J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K.,Lysgaard, S., … Jacobsen, K. W. (2017). The atomic simulationenvironment—a python library for working with atoms. Journal ofPhysics: Condensed Matter, 29(27), 273002.https://doi.org/10.1088/1361-648x/aa680e
    • Kapil, V., Rossi, M., Marsalek, O., Petraglia, R., Litman, Y., Spura,T., Cheng, B., Cuzzocrea, A., Meißner, R. H., Wilkins, D. M., Helfrecht,B. A., Juda, P., Bienvenue, S. P., Fang, W., Kessler, J., Poltavsky, I.,Vandenbrande, S., Wieme, J., Corminboeuf, C., … Ceriotti, M. (2019).I-PI 2.0: A universal force engine for advanced molecular simulations.Computer Physics Communications, 236, 214–223.https://doi.org/10.1016/j.cpc.2018.09.020
    • Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio totalenergy calculations for metals and semiconductors using a plane-wavebasis set. Computational Materials Science, 6(1), 15–50.https://doi.org/10.1016/0927-0256(96)00008-0
    • Kumar, S., Jing, X., Pask, J. E., Medford, A. J., & Suryanarayana, P.(2023). Kohn–sham accuracy from orbital-free density functional theoryvia δ𝛿\deltaitalic_δ-machine learning. The Journal of Chemical Physics,159(24). https://doi.org/10.1063/5.0180541
    • Kumar, S., Pask, J. E., & Suryanarayana, P. (2024). Shock hugoniotcalculations using on-the-fly machine learned force fields with abinitio accuracy. Physics of Plasmas, 31(10).https://doi.org/10.1063/5.0230060
    • Litman, Y., Kapil, V., Feldman, Y. M. Y., Tisi, D., Begušić, T.,Fidanyan, K., Fraux, G., Higer, J., Kellner, M., Li, T. E., Pós, E. S.,Stocco, E., Trenins, G., Hirshberg, B., Rossi, M., & Ceriotti, M.(2024). I-PI 3.0: A flexible and efficient framework for advancedatomistic simulations. The Journal of Chemical Physics,161(6), 062504. https://doi.org/10.1063/5.0215869
    • Mortensen, J. J., Larsen, A. H., Kuisma, M., Ivanov, A. V., Taghizadeh,A., Peterson, A., Haldar, A., Dohn, A. O., Schäfer, C., Jónsson, E. Ö.,Hermes, E. D., Nilsson, F. A., Kastlunger, G., Levi, G., Jónsson, H.,Häkkinen, H., Fojt, J., Kangsabanik, J., Sødequist, J., … Thygesen, K.S. (2024). GPAW: An open python package for electronic structurecalculations. The Journal of Chemical Physics, 160(9).https://doi.org/10.1063/5.0182685
    • Musielewicz, J., Wang, X., Tian, T., & Ulissi, Z. (2022). FINETUNA:Fine-tuning accelerated molecular simulations. Machine Learning:Science and Technology, 3(3), 03LT01.https://doi.org/10.1088/2632-2153/ac8fe0
    • Sharma, A., & Suryanarayana, P. (2021). Real-space density functionaltheory adapted to cyclic and helical symmetry: Application to torsionaldeformation of carbon nanotubes. Physical Review B,103(3). https://doi.org/10.1103/physrevb.103.035101
    • Sharma, A., & Suryanarayana, P. (2023). Calculation of phonons inreal-space density functional theory. Physical Review E,108(4). https://doi.org/10.1103/physreve.108.045302
    • Shojaei, M. F., Pask, J. E., Medford, A. J., & Suryanarayana, P.(2023). Soft and transferable pseudopotentials from multi-objectiveoptimization. Computer Physics Communications, 283,108594. https://doi.org/10.1016/j.cpc.2022.108594
    • Smith, D. G. A., Burns, L. A., Simmonett, A. C., Parrish, R. M.,Schieber, M. C., Galvelis, R., Kraus, P., Kruse, H., Di Remigio, R.,Alenaizan, A., James, A. M., Lehtola, S., Misiewicz, J. P., Scheurer,M., Shaw, R. A., Schriber, J. B., Xie, Y., Glick, Z. L., Sirianni, D.A., … Sherrill, C. D. (2020). PSI4 1.4: Open-source software forhigh-throughput quantum chemistry. The Journal of ChemicalPhysics, 152(18). https://doi.org/10.1063/5.0006002
    • Suryanarayana, P., Pratapa, P. P., Sharma, A., & Pask, J. E. (2018).SQDFT: Spectral quadrature method for large-scale parallel o(n)kohn–sham calculations at high temperature. Computer PhysicsCommunications, 224, 288–298.https://doi.org/10.1016/j.cpc.2017.12.003
    • Tancogne-Dejean, N., Oliveira, M. J. T., Andrade, X., Appel, H., Borca,C. H., Le Breton, G., Buchholz, F., Castro, A., Corni, S., Correa, A.A., De Giovannini, U., Delgado, A., Eich, F. G., Flick, J., Gil, G.,Gomez, A., Helbig, N., Hübener, H., Jestädt, R., … Rubio, A. (2020).Octopus, a computational framework for exploring light-driven phenomenaand quantum dynamics in extended and finite systems. The Journalof Chemical Physics, 152(12).https://doi.org/10.1063/1.5142502
    • Timmerman, L. R., Kumar, S., Suryanarayana, P., & Medford, A. J.(2024). Overcoming the chemical complexity bottleneck in on-the-flymachine learned molecular dynamics simulations. Journal ofChemical Theory and Computation, 20(14), 5788–5795.https://doi.org/10.1021/acs.jctc.4c00474
    • Xu, Q., Sharma, A., Comer, B., Huang, H., Chow, E., Medford, A. J.,Pask, J. E., & Suryanarayana, P. (2021). SPARC: Simulation package forab-initio real-space calculations. SoftwareX, 15, 100709.http://dx.doi.org/10.1016/j.softx.2021.100709
    • Xu, Q., Sharma, A., & Suryanarayana, P. (2020). M-SPARC:Matlab-simulation package for ab-initio real-space calculations.SoftwareX, 11, 100423.http://dx.doi.org/10.1016/j.softx.2020.100423
    Versatile Python Interface for Real-space Density Functional Theory Calculations (2024)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Ouida Strosin DO

    Last Updated:

    Views: 6454

    Rating: 4.6 / 5 (76 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Ouida Strosin DO

    Birthday: 1995-04-27

    Address: Suite 927 930 Kilback Radial, Candidaville, TN 87795

    Phone: +8561498978366

    Job: Legacy Manufacturing Specialist

    Hobby: Singing, Mountain biking, Water sports, Water sports, Taxidermy, Polo, Pet

    Introduction: My name is Ouida Strosin DO, I am a precious, combative, spotless, modern, spotless, beautiful, precious person who loves writing and wants to share my knowledge and understanding with you.